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Abstract

A critical review of the existing analytical solutions of the thermodiffusion equation and methods for measuring heat
of transport was performed. Particular emphasis is placed upon the fact that of the reported solutions yielding rea-
sonable accuracy, there is no one solution that describes the diffusion profile behavior while making possible to measure
the diffusion substance’s heat of transport. Simple thermodiffusion equation solutions were obtained by taking into
account the coordinate dependence of the diffusion coefficient and thermodiffusion factor in a temperature field. Such
an approach has allowed the proposal of a new method for measuring the heat of transport similar to the conventional
method for measuring a diffusing impurity’s activation energy. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Thermodiffusion in the solid is one of a transport
process that has great practical importance. Most of the
research associated with the presence of concentration
and temperature gradients has been made with metals
and alloys. The first critical review of such research was
published in the work of Oriani [1]. With the advance of
a nuclear energetics the interest in thermodiffusion has
returned to metallic oxides that often heats up in in-
homogeneous temperature fields [2] in connection
with technological conditions. Further expansion of
investigations in this field associated with the advent of
semiconductor devices and the advancement of micro-
electronics [3]. The presence of temperature gradient
that is inherent to some technological processes have led
to the necessity of an investigation of thermodiffusion in
semiconductor materials, and a refinement of “isother-
mal” technologies. Under conditions of inhomogeneity
of the concentration and temperature distribution an
impurity behavior is defined by a series of parameters, of
which the more important are the temperature gradient
VT and the heat of transport Q*. The latter defines the
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value and direction of the substance flux that are caused
by the temperature gradient. Whereas VT is given by
experimental conditions, the heat of transport needs to
be defined. At the moment few methods for its mea-
suring exist. The best method uses the velocity of the
mass profile center [4]. In principle, knowing the O* and
VT we can define the concentration of impurity C(x,¢)
for the time moment ¢ and the point x using a computer
simulation or an analytical expression for C(x,¢). Un-
fortunately, until the present time an exact solution of
the thermodiffusion equation has not been derived and
the familiar ones is carried out with some degree of
approximation. Most consistently this problem is solved
in the works [5-7] where the x-dependence of the diffu-
sion coefficient D[T(x)] and thermodiffusion factor
O /[kT(x)] in linear approximation of expanding of the
function 1/7T(x) into Macloren’s series is taken into
account.

Thus, with the method of measuring for the O* [4]
and the solutions [5-7] we can find an analytical de-
scription of the thermodiffusion process to an accept-
able approximation. However, the solutions [5-7] have
cumbersome form and they are inconvenient for an
analysis of the thermodiffusion process, and the
method [4] does not use an explicit form of the solu-
tion C(x,¢); a uniform approach to process analysis is
lost.
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Nomenclature
C(x,t) = C  solvent substance concentration (m~3)
Cm(x, 1) solvent substance concentration

defined in Eq. (9) (m~3)
D(T(x)) = D diffusion coefficient (m? s~!)

D(0) diffusion coefficient at the coordinate
x=0(m?s")

D, diffusion coefficient defined in Eq. (22)
(m® s7)

D* diffusion coefficient defined in Eq. (26)
(m® s7)

Dj diffusion coefficient defined in Eq. (30)
(m®s™)

E activation energy (J)

J diffusing substance flux (m=2 s7!)

Jo diffusing substance flux at the point r,

(m~s™)
Boltzmann’s constant (J K1)
thickness of the layer where diffusion
takes place (m)

my mass of a single atom (kg)

M total substance amount referred to by
unit of area of the layer (kg m %)
number of the diffusing substance

atoms

7 position vector continuum’s point (m)

Fm absolute value of position vector of the
C(r,t) function maximum (m)

o heat of transport (J)

t time (s)

T(x)=T temperature (K)

Tm=T(rm) temperature at the point r, (K)

Ty = T(x = 0) temperature at the coordinate x = 0

AT temperature difference in the layer
where diffusion takes place (K)

vT temperature gradient (K m™")

U= U(x,t) concentration defined in Eq. (20) (m~3)

7 velocity of continuum’s particle
(diffusing substance atoms) (m s~')

[ velocity of continuum’s particle

(diffusing substance atoms) at the
point 7, (m s7")
velocity of C(7,¢) profile maximum

<L

(ms™)
v absolute value of ¥ (m s7!)
Om absolute value of C(x,¢) profile

maximum defined in Eq. (10) (m s™!)

U mean velocity of diffusing atoms
(ms™")

v* velocity of C(¢&,¢) profile maximum
defined in Eq. (87) (m s7!)

v velocity of C(¢&,¢) profile maximum
defined in Eq. (89) (m s7!)

b current coordinate (m)

Xmax abscissa of C(x,¢) profile maximum
(m)

X abscissa mass center of profile (m)

Greek symbols

o parameter defined in Eq. (31) (m™")

B dimensionless parameter, (VI/T)x

y dimensionless parameter, /Dyt

o density of continuum’s mass
(kg m™)

¢ coordinate defined in Eq. (24) (m)

At the same time, however, for the coordinate-in-
dependent approximation of the diffusion coefficient
and thermodiffusion factor, a simple analytical solu-
tion of the thermodiffusion equation [8] is obtained.
This solution simultaneously allows definition of O*
from the profile peak position of the diffusing sub-
stance. The approximation assumes that peak velocity
is constant. But as shown, the peak velocity is strongly
dependent on thermodiffusion time, and so, this as-
sumption causes a substantial error in the measure-
ment the O* [4].

In our work a unified approach is proposed for an
analytical description of the thermodiffusion process
and the heat of transport’s measurement on the basis
of a simple solution of form presented by Mock in
the work [8]. However in the solution we take into
account the temperature dependence of the diffu-
sion coefficient D[T(x)] and thermodiffusion factor

Q" /[T (x)].

2. Methods of solving the thermodiffusion equation and
measuring heat of transport

Let us make an overview of the principal methods of
thermodiffusion equation decisions and measuring heat
of transport. Note the advantages and disadvantages
and justify necessity of searching simple solutions con-
venient for the process’s practical analysis, while also
taking into account the temperature dependence of
DIT(x)] and ©*/[kT ().

2.1. Measuring heat of transport from atomic velocity in
peak concentration

Let us first write an equation of balance expressing
the condition of continuum’s mass conservation [9]
Op

el o0 =0 1
5 TV T =0, (1)
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here p is the density of continuum’s mass, 7* is the

velocity of continuum’s particles.
Represent p by the formula

p:?:7:m0C7 (2)

where C = N/V is the concentration of a diffusing sub-
stance, N is the number of the diffusing substance atoms
contained in the volume V, and my is the mass of a single
atom.

Thus, formula (1) is rewritten as

oC
= T =0 3
at+VCU , (3)

where Cv* is formulated for thermodiffusion process as

T o vr
Ctr=J= D<vc+ckT ) 4)

Here (4) is representative of the diffusing substance
flux, D = DyexplE/(kT)] is the diffusion coefficient, E
is the activation energy, T is absolute temperature, k
is Boltzmann’s constant, and Q* is the heat of trans-
port.

If VC = 0 at the point r,, of the maximum of the C(7)
function, then (7 = T(rm) = Tm), the Eq. (4) may be
written

. VT
JO:Cﬁ(;:—DckQT T

()

From this equation one can find the velocity of diffusing
substance atoms at the profile maximum point of im-
purity distribution [10]

. 9O VT
Yo = T T (6)

Gerl [10] identifies the velocity (6) with the velocity ¥ of
C(#,t) profile maximum. Then, knowing the exper-
imental value of maximum position change in the time
At and values D, T,VT, we can define Q*.

In Section 2.2 it will be shown that the afore-
mentioned assumption holds true for such diffusion
processes in an external force field where directional
substance velocity, received in response to a field, is
not dependent on diffusing atom coordinates; for
example, as occurs in an uniform electrical field. As
seen from formula (6), for thermodiffusion process
the independence of substance velocity from diffusing
atom coordinates is possible only when the condition
VT/T = const is fulfilled. At this point, exponential
temperature distribution must be set in a sample.
The approximation, as we shall see later, appears
to be overly rough for the constant temperature
gradient.

2.2. Decision of the thermodiffusion equation in an
external force field approximation and measurement of
heat transport from velocity of the concentration profile
maximum

First, the uniform thermodiffusion Eq. (3) must be
written (VT = const) in which a substance flux is defined
by formula (4)

oc o oC O VT
a—a{D(aﬂﬁTcﬂ' ™
Differentiating the right-hand side of (7) leads to the

expanded equation

oc _
o

FC L QHEVIAC, O (VT
Ox? kT T

T Ox kT
E
X <k—TfZ>C

In his work, it should be noted, Mock [8] neglects the
third term in brackets of formula (8). From this action,
besides equating 7 =Ty, D = D(0) = DyexplE/(kTp)],
one gets the solution characterizing diffusion in the field
of external force for diffusion from an instantaneous
plane source in a semiinfinite media

: (8)

M o 2
Clxyt) = o exp { - % 9)
where
VT
v=—D(Q +E) . (10)

where M is the total substance amount referred to by
unit of area of the layer. In what follows solution (9) and
velocity (10) will be specified by Cy(x,?) and vy, re-
spectively.

The velocity of the maximum profile C(x,¢) may be
estimated from the condition

oC
o
Ox

Taking into account that

oC _ ol _ 2(x —vt)
ox 4Dt |’
we find

Xmax = UL.

The maximum velocity of distribution C(x,¢) is defined
by Eq. (10) and, in Mock’s approximation, is not co-
incident to Gerl’s approximation where the velocity is vj.

In the general case from the formula representing flux
it follows that the atomic velocity of a diffusing sub-
stance should be defined as:
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C

U*ZfD%+U8. (11)
Assuming that C is defined by the (9), we find

vVC  x—ut

c 2Dt
and

* X v + *

V=55t

Considering time as a parameter, and taking into ac-
count that X = xyu.,x = vt as a consequence of profile
symmetry, we find the mean velocity of diffusing atoms
X 0 X v

E*ZZ*E‘FUS:Z‘FUS*E:US. (12)
Thus, in Mock’s approximation the atomic velocity v of
a diffusing substance in the profile’s maximum is equal
to the mean velocity 7* of all atoms and is not coincident
with the peak velocity v of profile C(x,?).

Similarly, as in Gerl’s approximation, heat of trans-
port is easily defined when diffusion time and maximum
position xy, are known.

If in Eq. (7) the factor located in front of the con-
centration C is set equal to a constant when differen-
tiation of the right-hand side is performed, then the
thermodiffusion equation takes the form that is charac-
teristic of diffusion in a uniform field. For this case

v= —Dg E,

kT T
that is, coincides with the velocity v (formula (6), where
T = Tp) of diffusing atoms in peak concentration. Thus,
Gerl’s method provides a rougher estimate of Q* than
Mock’s [8].

2.3. The profile’s peak and center of mass velocities and
measuring heat of transport

As is shown in [4], a profile asymmetry arising from
its spreading in a temperature field leads to a strong
dependence of maximum velocity from the time. The
expression obtained for the profile maximum velocity is

; vT
where
5 -1 2 2
) ([
Ox acjmmo \ T kT kT
(14)
and

T2 /3 2
kT (vC jTey s
VT \ ox3/ ox? ), Jov=0

The summand B in brackets of formula (13) has large
time dependence, because as the profile asymmetry is
increased in the point of its extremum, the function
03C/ox? is increased and 0>C/dx? is decreased [4]. As we
can see, the profile form is not changed if the point of its
extremum is transformed to the origin of coordinates.
Then, expanding the function C(x,¢) into a Macloren’s
series, and taking into account 0C/0x = 0 in the extre-
mum point, we have

1 0*C(0 1 *C(0

5 6x(2 )x2+§ axg ) 4+ (16)

C(x,t) = C(0) +

If function (16) is illustrated graphically, then the first
and second terms draw a symmetric parabola about the
C axis; and the third, gives an antisymmetric cubic
parabola. The ratio of the coefficients (is located in front
of x* and x?) characterizes the degree of the total graphic
asymmetry. The summand B, defined by formula (15), is
proportionate to this ratio; and, as the degree of asym-
metry increases it also rises very quickly and monoton-
ically. Thus, averaging the maximum profile velocity v
over time can result in essential error when heat of
transport Q* is measured. This drawback can be prac-
tically eliminated if, when measuring heat of transport,
the value of the profile’s mass center velocity is used.
The value of the velocity in a linear approximation
about the abscissa xy,, of the C(x,¢) peak is defined by
the following formula [4]:

Ue = *D(xmax)(Q* 7E)(1 B C)%7 (17)
where

) \& E
e "

and X is the coordinate mass center of the profile.

The value of C is almost always much less than unity.
As we can see, if AL is the thickness of the layer where
diffusion takes place and AT is the temperature differ-
ence in this layer; then, VT = AT /AL and

(¥ —xmax) AT E
= — 2. 19
C="TAL  Tomm) T ) (19)
Because

E (X — Xmax)

KT (Xax) 2~ =5

<1,

and almost without exception AT/T(x) <« 1, then the
value of C (formula (19)) can be neglected.

The time dependence of the mass center velocity will
be defined by factor D(xmax)/kT*(Xmax). The relative
error in the process of defining mass center velocity is
equal to

£_2 T(xmax) - TO
kTy Ty
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and for small values of the difference AT (xp.) =
T (xmax) — To mass center velocity can be considered as a
constant. Emphasis must be placed on formula (17)
derivation, which occurred without the deduction of an
explicit dependence C(x,¢).

Thus, this method provides a highly accurate way of
measuring heat of transport without employing the
thermodiffusion equation.

2.4. The thermodiffusion equation’s solution within a
linear approximation by expansion of the 1/T(x) function
in a Macloren series

The diffusion substance flux is shown in the works
[5-7] by substitution

Q*

= - 2
U = cleyexn (25 ) (20)
in the one-dimensional case, can be reduced to

oUu

=D — 21
J 1 ox ) ( )
where
E— O«

D, = Dyexp ( - kTQ ) (22)

Then, the thermodiffusion Eq. (8) may be written as
follows:

g\oUu .- 0 oUu
exp (ﬁ) s divJ = o D, ) (23)
Introducing the new variable &, defined by
0 0\ 0
= (- ) o (24)
Eq. (23) can be reduced to the second Fick equation
ou 0 [/, . 0U
wlr %) >

for the U function at the diffusion coefficient

E-20"
D*:Doexp(f kTQ )

(26)

By expressing 1/7[¢(x)] as the Macloren series in ¢ in a
linear case, we have

L_i,w%‘ 27
© T 70|, 7
Then,

9= [ oo (8 )0

. KkIjexp(Q'/kTy) o T'(0)
=g e (S )

(28)

D" = Dgexp (o), (29)
* E— ZQ*

Dj = Dyexp ( B ) (30)

oy = KT VTexp(—kTO>. (31)

The solution of Eq. (25) at 0y¢ < 1 for diffusion from an
instantaneous plane source in semi-infinite media, was
found in the work of Rudakov and Ovcharov [7] as an
asymptotic series. Introducing variables K (&), W (¢, 1),
A(E,1),B(&,t), we present this solution in a more com-
pact form

exp [ — W2(¢ 1))

C(& 1) = K(&) % {A(ét) ~D(0);

+B<¢,r>werfcw<m}, 3
where
W(g*,r):%;g‘jé/”, (34)
A = 1= 508 55 exp(a?) — 0 explac 2

16exp( — o0E/2) — 27) 4 -, (35)

B(¢&,t) = Sexp(an&) — 59exp(a0/2) — Texp(—xé/2)
+ 3z{agD;z +2[1 — exp( — aog/z)f} S
(36)

In this paper the accuracy of calculation of the functions
A(&,¢) and B(¢&,¢) is better than in the work [7].

The chief drawback of solution (32) is its unwieldy
form. This fact strongly reduces its practical im-
plementation to analysis of the actual processes.

3. An investigation of the thermodiffusion equation
solution obtained in a linear approximation and establish-
ment of a form suitable for its use in applied problems

A characteristic feature of diffusion in a temperature
field is the availability of a diffusing substance’s asym-
metric profile [4,8]. The feature is observed experimen-
tally [8] and substantiated theoretically in the work of
Crolet and Lasarus [4]. Quantitative consideration of
asymmetry on diffusion from an extended source of in-
finite extent and on diffusion from an instantaneous
plane source in semi-infinite media is also made by
contemporary authors in works [5-7]. The formula de-
scriptive of the last case is presented in the previous
section: formula (32). It takes the form typical of diffu-
sion in a uniform external field (formula (9)) and



748 V.I. Rudakov, V.V. Ovcharov | International Journal of Heat and Mass Transfer 45 (2002) 743-753

descriptive of a symmetric profile when the following
conditions are fulfilled:

A& ) =1, (37)
B(&,1) =0, (38)
K (&) exp[—W2(&,1)] = f (1) exp(x — vt)’, (39)

where f(¢) is a function of time.

For small values of the parameter y = oco\/D_gt and
value ¢ ~ /Dit we can consider the condition (37) as
fulfilled. Then,

W(@ t) — lim 1- exp(focof/Z) _ é (40)

=0 %+/Dt 2,/Djt
hence, an profile asymmetry results from the K(¢)
factor; the B(¢,t)erfcW (&,¢) summand in a bracket of
formula (32); and, an asymmetrical form of the ¢&(x)
dependence. This raises the next series of questions: first,
how do each of the approve-listed factors affect profile
asymmetry; and second, how can the dependence C(x, ¢)
be approximated in its simplest form while still de-
scribing the diffusion processes most characterizing
features in a temperature field?

Analysis of the solution derivation (32) allows us to
separate out three principal stages. This is the transition
from the function C(x,¢) to the function U(x,?) (substi-
tution of formula (20)), the change of the variable ¢ — x
(formula (24)), and an expansion of the function 1 /T[&(x)]
into the series up to a linear term (by formula (27)). To
realize their influence on the solution’s form let us sepa-
rate the each of the stages. To start with, we will investi-
gate the role of substitution of formula (20) by changing
the C(x,¢) function to new functions with no change of
variables ¢ — x. As it turns out, this approach enables us
to take into account the x-dependence occurring in a
temperature field from basic diffusion process parame-
ters; namely, a diffusion coefficient and a thermodiffusion
factor attained by restricting only the zeroth term of
1/T(x)’s the function expansion in Macloren series

11
) Ty

(41)

This kind of co-ordinate dependence on the diffusion
parameters in a temperature field shall be said to be the
temperature dependence for shortening and expanding
formula (41), and shall also be the zeroth approximation
of the 1/T(x) function. Comparing these solutions with
the Mock solution Cy(x, ¢), one finds similarly for small
values for the x variable.

At the next stage, within the framework of the 1/7(x)
function’s zeroth approximation, accuracy is improved
by changing to the new variable £. Finally, these solu-
tions for small values of x may be compared to solution
of (32) obtained in linear approximation.

Operating in such a manner (that is, gradually im-
proving the solution’s accuracy) one discovers the fun-
damental factor responsible for profile asymmetry.

3.1. Solutions taking into account temperature dependence
of thermodiffusion coefficients in the zeroth approximation

3.1.1. Considering the diffusion coefficient’s temperature

dependence
The diffusion substance flux can be written
oC _O'VT
=-D——-D=_—C. 42
J Ox kT T ¢ (42)

The new function can be introduced
F(x,t) = D(x)C(x,1). (43)

Its partial derivative with respect to x is
oF _ap oC

ox  Ox + D&' (44)
Then, taking into account
oD E VT
o TP #3)
we can formulate
oC OF EVT
w AT (46)
Hence,
oF
J=——+S8F 47
5 T SF (47)
where
E—Q VT
= —. 4
s kT(x) T(x) (48)

The divergence of the J flux can be found

.- o FF oF \

since,

oS vT

—=-2—1_. 50
Ox T (50)

For the value F that is small when compared to its first
and second derivative (that is, on the concentration
profile’s tail regions) we can disregard the third term on
the right-hand side of formula (49). Naturally, this ap-
proximation introduces a very large error as Q* is de-
fined from the distribution profile maximum’s position.
It has a more illustrative character, allowing it to be
compared with Mock’s solution [8], that is got note-
worthy for similar assumptions. Thus, the thermodiffu-
sion equation becomes

1or_@F_ o
Dot or o’
Setting 7= T(0) = T (that is D = D(0),S = S(0)) we

immediately can write a solution similar to Mock’s
solution (9)

(51)
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_ (0) (-’
P = Jbon |~ bt | -
where
b = —D(0)S(0) = —D(0) Q*k;OE VTOT' (53)

The factor D(0) on the right-hand side of formula (52)
originates from a conservation condition of the diffusing
substance: because, C(x,0) = F(x,0)/D(0). In addition,
since we know F = DC, the expression for C taking into
account the dependence D(T) for zeroth approximation
becomes

_ MD(0) (o)’
C(x’t)_D 7D(0)t 4D(0)t
woolt(-1)] 1 o
— D) exp | — 2D0): (54)

The characteristic factor

o[£ (%))

takes into account the temperature dependence of a
diffusion coefficient and is responsible for the asym-
metric evolution of the diffusing profile during the
thermodiffusion process.

Solution (54) for small x or, more precisely, for the
values of non-dimensional parameter

p=(VT/T)x< 1

may be found by taking into account

R 1 vr
T T Lh+VIx T, 12

After a number of rearrangements, we find

C(x,t) = H(t)Cm(x,1), (55)
where

exp | EQ (VT
H(t) = exp [(kTO)Z ( T ) D(O)t] (56)

It follows that in this approximation the profile maxi-
mum velocity of the distribution C(x,¢) coincides with
the velocity in Mock’s; whereas, its value grows in
agreement with the H(¢) law in time.

3.1.2. Considering the temperature dependence of the
thermodiffusion factor
As in other notable works [5-7], we introduce the

function
Q*
—I7 ® ) . (57)

U(x,t) = C(x,t) exp (

Thermodiffusion equation then takes the form

oUu 0\ 0 o\ oU
In the zeroth approximation of an expanding Macloren
series we set the function

1 11

T(x):To-l-VTxNFO'

Thus,
ou U

The solution of the equation for diffusion from an in-
stantaneous plane source in semi-infinite media is

M exp ( — %) 22
(- 200 ) (50
Then it follows that:

nD(0)t
Mexp |Z(1- T 2
[nD<(0)t ) exp (_ 4D(0)t)' (61)

For this solution as well as in the previous case the ap-
pearance of an exponential factor as

o[£ (%))

characterizes the asymmetric evolution of the profile.
The form of the solution for small values of the
p = (VT /T)x parameter is written as

(x —vr)?
~4D(0)t }’ (62)

U(x,t) =

C(x,1) =

MH, (1)

NCHIOTR

C(x,1) =

where
20 VT
kT, T, '

H (1) :D(O)t( o )Z(VT)Z. (64)

kT, T,

= —D(0) (63)

Hence, the velocity v of the maximum of distribution
C(x,t) is distinguished from velocity vy in Mock’s ap-
proximation.

Falling back upon a higher approximation, the
modified diffusion coefficient

E_ %
D, :Doexp(— kTQ )

is introduced. Then, Eq. (58) takes the form

oU 0"\ [oD, U U
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Taking into account,

oD, _ O —ENT

o kT T (66)
we get

oU *U Q" —EVT U
a—t—D{W‘—kT Ta] (67)

Once again, assuming that 1/T(x) ~ 1/7,, we find a
solution in the form

:MCXP(_%) 7(x—vt)2 (68)
7D(0): 4D(0)t |’
where
E—-Q' VT
—D(0) i T (69)
Thus,
Mexp[§(4-4 -

For small values of the f = (VT /T)x parameter it may
be written

C(x,t) = H(t)Cwm(x, 1), (71)

that is, for small f this solution coincides with solution
(55) — taking into account the temperature dependence
DI[T(x)]. In case condition < 1 is not fulfilled, we can
expect discordance. It is reasonable a solution will be
tried to find that conserves both of these temperature
dependences:

o ] i o 5]

3.1.3. Combined consideration of the temperature depen-
dence of the diffusion coefficient and thermodiffusion
factor

Introduce the function Z such that

O +E
kT

C=Zexp { (72)

Substituting C from formula (72) and re-inserting it in
Eq. (42), we obtain the expression for the diffusing
substance flux

_ o\(ez_ EVT
J = DOeXp(kT)(@x T TZ . (73)

Then,
A 0\ |®Z QO +EVIaZ
d‘“’*a*‘[")e"p(ﬁ) & T T o
E (NT\*[ O
+k7<7> (kT-I-Z)Z . (74)

In exactly the same manner as for the function F, dis-
regarding the third term in brackets on the right-hand
side of formula (74), we transform the thermodiffusion
equation

o [e7 0o
or | w? kKT ox |’

(75)

Its solution for the zeroth approximation (D = D(0),
T = Tp) is given by formula

Mexp (- %) (x — v)?
Zet)=— 0 S exp | o 76
&4 D0y P | T apo): (76)
where

2 EEVT

= D(0) T (77)
Thus,
e ool GE)] T

x,t) = - |

7D(0)1 P| " ap()
(78)

For small values of the parameter f = (VT/T)x,
C(x,t) = Cm(x,1). (79)

This solution is identical to Mock’s solution [8] (9).
Thus, we may consider solution (78) as a generalization
of Mock’s solution for any value of the parameter f.
Unfortunately, as in Mock’s solution, it is a not very
appropriate for measure of Q" (for the same reasoning
previously noted).

3.2. The influence of the change of variable ¢ — x on the
solution’s form derived in the zeroth approximation

Now let us consider the manner in which the change
of variable ¢ — x affects the solution derived in the
zeroth approximation for the U(x,¢) function (formula
(20)). Taking into account that

o O\ E—-20" VT
ag‘DeXp( kT) KTT (80)

we transform Eq. (25) to the form

U dU 0"\ E—20" VT U
“_p D 2 YLO 81
o o T exp < kT) w1 ooe &
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Setting
* k- — _ E - 2Q*
D* =D*(0) = Dyexp ( i ), (82)
O"\E-20"VT
y=—D"(0 — — 83
0 (0)exp < kTO) Ko T (83)
we immediately obtain the solution for U:
M (& - v’
Ut =——exp| ———— |. 84
(&0 = 5o P ( 4D (0)7 (84)

Thus,

C(&1) e [Q’_(ﬁiﬂ] exp <——(5_ Ut)z).

/7D(0)t 4D(0)1
(85)
For small values of the parameter
B fToieXp (—kTo)

_ MH(t) (e
0=y |~ o } (86)
where

w_ ey £ VT o
v =-D (O)k—TOTOeXp(—kTO) (87)
(e | (@ E)O (VT

Going into the variable x for small f = (VT/T)x, we
find

P = —D(O)kE70 VTOT (89)
and,

~ MH*(1) (=)’
R o T(UT [ 4D(0)r 0

Thus, using the example of solution (86), we see that the
change ¢ — x leaves the general structure, obtained in
the zeroth approximation, unchanged. In the general
case, an asymmetric character of dependence &(x) leads
to the increase of the asymmetric graph C[&(x),f] in
comparison with the graph C(x,¢). Comparing solution
(90) (obtained from solution (86) for small f) with
solution (55), shows that a consideration of the relation
&(x) leads to a change of both peak value (the function
H(t) # H*(¢)) and its velocity (vy # v').

This result may be explained in the following man-
ner. The relation &(x), as well as the function Ul(x, 1),
contains the exponential factor exp[—P/kT(x)] type
(P = £0"). During the process of solving the equation,

up to realizing the final result: (the function U(¢(x), 1)),
an explicit form of the relation is not discovered; thus,
the complete information contained in the equation is
still not visible. Revealing and approximating the re-
lations is carried out in the final step of solving the
transformations U — C and ¢ — x. The method of at-
tack improves the accuracy of the diffusion process de-
scriptions. Because of this, of the two solutions (70) and
(90), the second is decidedly the more exact.

3.3. Analysis of the solution obtained in a linear approx-
imation and its transformation for small values of the f
parameter

The influence of

C(x,t)exp {ﬁ} (P = const)
substitutions and the change of the variable ¢ — x on
the structure of the diffusion equation solution in a
temperature field has already been established in the
preceding sections. Summarizing the results, we can,
therefore, make the following conclusions.

The influence of temperature on thermodiffusion
coefficients — D[T'(x)] and O*/kT(x) — should be taking
into account in the linear approximation for each steps
founding the solution independently of one another
(solution (32)). In the solution the K (&) factor arises
primarily because of the

Ul(x,1) = C(x, ) exp ( - krg(l) )

substitution. The addendum in brackets of solution (32)
arises from taking into account the linear term for ex-
pansion into the Macloren series of the function 1/7(¢&).
Since the substitution of the variable ¢ — x does not
change the structure of solution obtained in the zeroth
approximation, one might expect it would not have a
profound impact on the structure of solution obtained in
the linear approximation. Thus, eliminating the adden-
dum in brackets of solution (32) we conserve informa-
tion about thermodiffusion coefficients’ (the diffusion
coefficient and thermodiffusion factor) temperature de-
pendence, but drastically simplify the final solution’s
form. Assuming ¢ ~ /Djt and the value of o/Dj < 1
in formulae (32)—(35), the following are obtained:

200+ E VT *
K(cf>:Mexp{— e Toéexp(—,go)}, 1)
-

A& ) ~ 1. (93)

Referring to the variable x for small = (VT/T)x we
find
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E(x) = xexp <kQT;>’

1 1 1 \%
— =~ —|1—-—=x,
T(x) Th+VIx T, Ty

_MH() (- vt)’
C(x, 1) = Dy e { I ] (94)
where
() = exp | — (E ;{;OQ* VTOT) D(O)t} (95)
__E+20 ED(()). (96)

2kTy, Ty

Solution (94) has a structure identical to the structure of
the solution obtained in the zeroth approximation. Es-
timate the margin of error involved when the erfcW (&, ¢)
function addendum for the small values of o /Dy and
¢ ~ /Dyt is eliminated. For small values of o /D and
¢~ /Dit, the value of A(&,7) ~ 1, then first compare
the value of (97)

2 €Xp (%)B(g’, 1)\/7D(0)t
26

©7)

with unity.

Assuming " ~NE~E—-20"~1 eV, T~ 10 K,
VT ~ 10° K/m, D(0) ~ 10~ m?/s (for self-diffusion of
Au [8]), t ~ 10* s, we find, that the value (97) is equal
~5x 1073, Consequently, over peak concentration
C(&,¢) we can disregard the summand influence. For
small values op¢ the function W (¢, ) is not too different
from the function x/2./D(0)z. A relative decrease
velocity defined as ratio between decrease velocity of
exponential function and decrease velocity of error—
function complement, which are in brace of relation (32)

2 !
(exp[ny(fJ)l]) ~ W(é,t) ~ X
(erfeW (&,1)) 2+/D(0)¢
increases proportionally to x. That is the addendum
where erfc (¢, 1) (for small o /D) emerges only in the
distant portions (~ 10> 1/D(0)¢) of profile tails.

Thus, for small values of the parameters oco\/D—gt and
p, formula (94) highly accurately describes the diffusion
process in a temperature field over a sufficiently wide
range of a concentration peak.

As is seen from solution (94) (for small values of the
parameter f§ = (VT /T)x) the profile is symmetric. A
profile asymmetry shows up as the value of f is increased,
and can be described in the more general solution

K($)
\/mD(0)¢

where K(&) and W(¢&,¢) is defined by formulae (91) and
92).

Clew). 1 = exp [~ W (2.0)], (98)

3.4. A new method for measuring heat of transport, taking
into account the diffusion coefficient and a thermodiffusion
factor’s temperature dependence

Let the general prerequisites that open the way to
formulating new methods for measuring heat of trans-
port be stated.

Consideration of the temperature dependency of the
factor exp(—P/kT(x)) in the thermodiffusion equation,
leads to an appearance of the factors

oot 7)

in its solutions. It has a pronounced effect on the de-
pendence C(x,¢), expressed in a profile asymmetry. The
result is in agreement with qualitative conclusions re-
garding the profound influence that profile asymmetry
has on the maximum distribution velocity of a diffusing
substance [4].

For small values of the parameter § = (VT/T)x the
factor is written

P/ 1 1 N P VT
ol (a4 e[
and, an index of an exponent is set linear with respect to
x. In this case the information on profile asymmetry is
lost, however, its velocity and value do differ greatly
from the corresponding dependence derived without
consideration of this factor.

Different form of the solutions C(x, ) that the tem-
perature dependence of exp(—P/kT(x)) is taken into ac-
count against the value of P and the way of solving of the
thermodiffusion equation shows that even with a small
value of f, the zeroth approximation of exp(—P/kT(x))
(for reasonable description of the process) is lacking. To
make an estimate of heat of transport the linear approx-
imation formula (32) is required. For small values of f§
solution (32) can be put in form (94) whose simplicity
provides a new method for measuring heat of transport.

Denote
Co——M (99)

nD(0)¢

Then, taking the logarithm of formula (94) we find

E+20° VT 1,

InC—1InCy=y— A oqa
nC-lInCo=y T, T by (100)

Further, taking a derivative of this function, we can
write
dinC E+20* VT 1
=)y =- —— X.
o7 4T, T, 2D(0)

(101)

The dependence y/(x) is a linear function. Giving the
function In C in the tabulated manner at equally small
intervals Ax, we can approximately formulate
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AlnC
Ax

The graphic Aln C/Ax(x) will illustrate a straight line.
Then, from the condition x =0 we find
E

Ty ,
O = - 2kT0v—“Ty(0)+E : (103)

/

. (102)

4. Conclusion

The thermodiffusion equation’s analysis has been
completed, taking into account the diffusion coefficient
and thermodiffusion factor’s temperature dependence
(which, is involved in the exponential factors such as
exp(—P/kT(x)) (P = const)) in a linear approximation
of expanding the function 1/7(x) into Macloren’s series.
Three principal stages of its derivation are recognized:
namely, the substitution U(x,¢) — C(x,¢), the changing
¢ — x, and the expansion of the function 1/T[£(x)] into
Macloren’s series up to the linear term. The affect of
each on the equation’s finite form is examined. It is
shown that even within the limits of the zeroth ap-
proximation, expansion of the function 1/7(x) into
Macloren’s series, brings to light the principal factors
having a substantial effect on the dependence C(x, ¢), and
which cause profile asymmetry namely, the factor

P/ 1 1

o[ (757))

A number of the approximations in which P takes the
values E,Q*, Q0" + E are examined. A comparison of
these solutions with the solutions in the linear approxi-
mation allows a conclusion to be made regarding the
zeroth approximation if temperature dependence of
D|[T(x)] and Q*/[kT(x)] is taken into account: a reason-
able degree of accuracy is not yielded for the diffusion

process descriptions in the temperature field; and, for
measuring its central parameters (namely, the heat of
transport — Q*). Using the thermodiffusion equation’s
solution for an instantaneous plane source in semi-infi-
nite media [7] at the value of the parameters «y¢ and
p < 1, the new method of measuring of heat of trans-
port O* has been proposed.
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